Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
J Clin Med ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38610769

ABSTRACT

Background: The disruption of social rhythms was found to be associated with depressive disorders during the COVID-19 pandemic; lower rates of these disorders were surprisingly found in old adults. The present study aims to verify the stability of social rhythms during lockdown in a sample of elderly people. Methods: Controlled cohort study (secondary analyses) of a previous randomized-controlled trial with the first evaluation in April 2019 (T0) and then 48 weeks later (T1) during the lockdown. The regulation of social and behavioral rhythms was measured through the Brief Social Rhythms Scale (BSRS); the Patient Health Questionnaire-9 (PHQ9) was adopted to detect relevant depressive symptoms. Results: 93 elderlies (73.36 ± 4.97 years old, 50.5% females) were evaluated at T0 and T1. Neither the total score of BSRS nor any of the 10 items showed a statistically significant difference comparing the two survey periods. The frequency of relevant depressive symptoms was 5.3% at T0 and 6.4% at T1 (OR = 0.8, CI95% 0.2-24). Conclusions: Among elderlies who did not show an increased risk of depression during the lockdown, social and behavioral rhythms remained exceptionally stable during the same period. Considering previous evidence about rhythms dysregulation preceding depression, their stability may be considered a factor of resilience.

2.
Virus Res ; 343: 199356, 2024 May.
Article in English | MEDLINE | ID: mdl-38490582

ABSTRACT

Coronaviruses contain one of the largest genomes among the RNA viruses, coding for 14-16 non-structural proteins (nsp) that are involved in proteolytic processing, genome replication and transcription, and four structural proteins that build the core of the mature virion. Due to conservation across coronaviruses, nsps form a group of promising drug targets as their inhibition directly affects viral replication and, therefore, progression of infection. A minimal but fully functional replication and transcription complex was shown to be formed by one RNA-dependent RNA polymerase (nsp12), one nsp7, two nsp8 accessory subunits, and two helicase (nsp13) enzymes. Our approach involved, targeting nsp12 and nsp13 to allow multiple starting point to interfere with virus infection progression. Here we report a combined in-vitro repurposing screening approach, identifying new and confirming reported SARS-CoV-2 nsp12 and nsp13 inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Drug Repositioning , DNA-Directed RNA Polymerases , DNA Helicases/genetics , DNA Helicases/metabolism , Viral Nonstructural Proteins/metabolism
3.
Virus Res ; 336: 199221, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37704176

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is fading, however its etiologic agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues posing - despite the availability of licensed vaccines - a global health threat, due to the potential emergence of vaccine-resistant SARS-CoV-2 variants. This makes the development of new drugs against COVID-19 a persistent urgency and sets as research priority the validation of novel therapeutic targets within the SARS-CoV-2 proteome. Among these, a promising one is the SARS-CoV-2 nucleocapsid (N) phosphoprotein, a major structural component of the virion with indispensable role in packaging the viral genome into a ribonucleoprotein (RNP) complex, which also contributes to SARS-CoV-2 innate immune evasion by inhibiting the host cell type-I interferon (IFN-I) response. By combining miniaturized differential scanning fluorimetry with microscale thermophoresis, we found that the 100-year-old drug Suramin interacts with SARS-CoV-2 N-terminal domain (NTD) and C-terminal domain (CTD), thereby inhibiting their single-stranded RNA (ssRNA) binding function with low-micromolar Kd and IC50 values. Molecular docking suggests that Suramin interacts with basic NTD cleft and CTD dimer interface groove, highlighting three potentially druggable ssRNA binding sites. Electron microscopy shows that Suramin inhibits the formation in vitro of RNP complex-like condensates by SARS-CoV-2 N with a synthetic ssRNA. In a dose-dependent manner, Suramin also reduced SARS-CoV-2-induced cytopathic effect on Vero E6 and Calu-3 cells, partially reverting the SARS-CoV-2 N-inhibited IFN-I production in 293T cells. Our findings indicate that Suramin inhibits SARS-CoV-2 replication by hampering viral genome packaging, thereby representing a starting model for design of new COVID-19 antivirals.

4.
Viruses ; 15(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37766262

ABSTRACT

Endogenous retroviruses (ERVs) are integrated into host DNA as the result of ancient germ line infections, primarily by extinct exogenous retroviruses. Thus, vertebrates' genomes contain thousands of ERV copies, providing a "fossil" record for ancestral retroviral diversity and its evolution within the host genome. Like other retroviruses, the ERV proviral sequence consists of gag, pro, pol, and env genes flanked by long terminal repeats (LTRs). Particularly, the env gene encodes for the envelope proteins that initiate the infection process by binding to the host cellular receptor(s), causing membrane fusion. For this reason, a major element in understanding ERVs' evolutionary trajectory is the characterization of env changes over time. Most of the studies dedicated to ERVs' env have been aimed at finding an "actual" physiological or pathological function, while few of them have focused on how these genes were once acquired and modified within the host. Once acquired into the organism, genome ERVs undergo common cellular events, including recombination. Indeed, genome recombination plays a role in ERV evolutionary dynamics. Retroviral recombination events that might have been involved in env divergence include the acquisition of env genes from distantly related retroviruses, env swapping facilitating multiple cross-species transmission over millions of years, ectopic recombination between the homologous sequences present in different positions in the chromosomes, and template switching during transcriptional events. The occurrence of these recombinational events might have aided in shaping retroviral diversification and evolution until the present day. Hence, this review describes and discusses in detail the reported recombination events involving ERV env to provide the basis for further studies in the field.

5.
Molecules ; 28(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764476

ABSTRACT

The spread of Human Immunodeficiency Virus (HIV) still represents a global public health issue of major concern, and would benefit from unveiling unique viral features as targets for drug design. In this respect, HIV-1 integrase (IN), due to the absence of homologs in human cells, is a popular target for the synthesis of novel selective compounds. Moreover, as drug-resistant viral strains are rapidly evolving, the development of novel allosteric inhibitors is acutely required. Recently, we have observed that Kuwanon-L, quinazolinones and thienopyrimidinones containing at least one polyphenol unit, effectively inhibited HIV-1 IN activity. Thus, in the present research, novel dihydroxyphenyl-based thienopyrimidinone derivatives were investigated for their LEDGF/p75-dependent IN inhibitory activity. Our findings indicated a close correlation between the position of the OH group on the phenyl moiety and IN inhibitory activity of these compounds. As catechol may be involved in cytotoxicity, its replacement by other aromatic scaffolds was also exploited. As a result, compounds 21-23, 25 and 26 with enhanced IN inhibitory activity provided good lead candidates, with 25 being the most selective for IN. Lastly, UV spectrometric experiments suggested a plausible allosteric mode of action, as none of the thienopirimidinones showed Mg2+ chelation properties otherwise typical of IN strand transfer inhibitors (INSTIs).

6.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631033

ABSTRACT

In this work we investigated, for the first time, the effect of Plagius flosculosus (L.) Alavi & Heywood, a Sardinian-Corsican endemic plant, on HIV-1 integrase (IN) activity. The phytochemical analysis of the leaves chloroform extract led us to isolate and characterize three compounds (SPK1, SPK2, and SPK3) belonging to the spiroketals, a group of naturally occurring metabolites of phytochemical relevance with interesting biological properties. Due to their structural diversity, these cyclic ketals have attracted the interest of chemists and biologists. SPK1, SPK2, and SPK3 were evaluated here for their ability to inhibit HIV-1 integrase activity in biochemical assays. The results showed that all the compounds inhibited HIV-1 IN activity. In particular, the most active one was SPK3, which interfered in a low molecular range (IC50 of 1.46 ± 0.16 µM) with HIV-1 IN activity in the presence/absence of the LEDGF cellular cofactor. To investigate the mechanism of action, the three spiroketals were also tested on HIV-1 RT-associated Ribonuclease H (RNase H) activity, proving to be active in inhibiting this function. Although SPK3 was unable to inhibit viral replication in cell culture, it promoted the IN multimerization. We hypothesize that SPK3 inhibited HIV-1 IN through an allosteric mechanism of action.

7.
Antiviral Res ; 217: 105697, 2023 09.
Article in English | MEDLINE | ID: mdl-37562607

ABSTRACT

For RNA viruses, RNA helicases have long been recognized to play critical roles during virus replication cycles, facilitating proper folding and replication of viral RNAs, therefore representing an ideal target for drug discovery. SARS-CoV-2 helicase, the non-structural protein 13 (nsp13) is a highly conserved protein among all known coronaviruses, and, at the moment, is one of the most explored viral targets to identify new possible antiviral agents. In the present study, we present six diketo acids (DKAs) as nsp13 inhibitors able to block both SARS-CoV-2 nsp13 enzymatic functions. Among them four compounds were able to inhibit viral replication in the low micromolar range, being active also on other human coronaviruses such as HCoV229E and MERS CoV. The experimental investigation of the binding mode revealed ATP-non-competitive kinetics of inhibition, not affected by substrate-displacement effect, suggesting an allosteric binding mode that was further supported by molecular modelling calculations predicting the binding into an allosteric conserved site located in the RecA2 domain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/genetics , RNA Helicases/metabolism , Virus Replication , Antiviral Agents/pharmacology
8.
Front Cell Infect Microbiol ; 13: 1193280, 2023.
Article in English | MEDLINE | ID: mdl-37424782

ABSTRACT

In the effort to identify and develop new HIV-1 inhibitors endowed with innovative mechanisms, we focused our attention on the possibility to target more than one viral encoded enzymatic function with a single molecule. In this respect, we have previously identified by virtual screening a new indolinone-based scaffold for dual allosteric inhibitors targeting both reverse transcriptase-associated functions: polymerase and RNase H. Pursuing with the structural optimization of these dual inhibitors, we synthesized a series of 35 new 3-[2-(4-aryl-1,3-thiazol-2-ylidene)hydrazin-1-ylidene]1-indol-2-one and 3-[3-methyl-4-arylthiazol-2-ylidene)hydrazine-1-ylidene)indolin-2-one derivatives, which maintain their dual inhibitory activity in the low micromolar range. Interestingly, compounds 1a, 3a, 10a, and 9b are able to block HIV-1 replication with EC50 < 20 µM. Mechanism of action studies showed that such compounds could block HIV-1 integrase. In particular, compound 10a is the most promising for further multitarget compound development.


Subject(s)
HIV-1 , Reverse Transcriptase Inhibitors , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship , Oxindoles , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , Virus Replication
9.
Viruses ; 15(7)2023 07 13.
Article in English | MEDLINE | ID: mdl-37515225

ABSTRACT

Viral replication often depends on RNA maturation and degradation processes catalyzed by viral ribonucleases, which are therefore candidate targets for antiviral drugs. Here, we synthesized and studied the antiviral properties of a novel nitrocatechol compound (1c) and other analogs that are structurally related to the catechol derivative dynasore. Interestingly, compound 1c strongly inhibited two DEDD box viral ribonucleases, HIV-1 RNase H and SARS-CoV-2 nsp14 3'-to-5' exoribonuclease (ExoN). While 1c inhibited SARS-CoV-2 ExoN activity, it did not interfere with the mRNA methyltransferase activity of nsp14. In silico molecular docking placed compound 1c in the catalytic pocket of the ExoN domain of nsp14. Finally, 1c inhibited SARS-CoV-2 replication but had no toxicity to human lung adenocarcinoma cells. Given its simple chemical synthesis from easily available starting materials, these results suggest that 1c might be a lead compound for the design of new antiviral compounds that target coronavirus nsp14 ExoN and other viral ribonucleases.


Subject(s)
COVID-19 , HIV-1 , Humans , SARS-CoV-2/genetics , Exoribonucleases/genetics , HIV-1/genetics , Molecular Docking Simulation , Antiviral Agents/pharmacology , Virus Replication , Catechols/pharmacology , Ribonuclease H/pharmacology , Viral Nonstructural Proteins/genetics , RNA, Viral/genetics
10.
Int J Biol Macromol ; 245: 125571, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37379953

ABSTRACT

Ebola virus is notorious for causing severe and even deadly haemorrhagic fever in infected humans and non-human primates. The high fatality rate of Ebola virus disease (EVD) has highlighted the need for effective diagnosis and treatment. Two monoclonal antibodies (mAbs) have been approved by USFDA for treatment of EVD. Virus surface glycoprotein is the common target for diagnostic and therapy including vaccines. Even so, VP35, a viral RNA polymerase cofactor and interferon inhibitor could be a potential target to curb EVD. The present work describes the isolation of three mAb clones from a phage-displayed human naïve scFv library against recombinant VP35. The clones showed binding against rVP35 in vitro and inhibition of VP35 in luciferase reporter gene assay. Structural modelling analysis was also carried out to identify the binding interactions involved in the antibody-antigen interaction model. This allows some insight into the "fitness" of the binding pocket between the paratope and target epitope which would be useful for the design of new mAbs through in silico means in the future. In conclusion, the information obtained from the 3 isolated mAbs could be potentially useful in the quest to improve VP35 targeting for therapeutic development in the future.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Humans , Hemorrhagic Fever, Ebola/drug therapy , Antibodies, Monoclonal/pharmacology , Viral Regulatory and Accessory Proteins , Epitopes/pharmacology
11.
Bioorg Med Chem ; 90: 117376, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37336083

ABSTRACT

A series of 1H-indeno[2',1':5,6]dihydropyrido[2,3-d]pyrimidine and 1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine derivatives was prepared and screened for antiparasitic and viral RNase H inhibitory activity. Several compounds showed considerable activity against Toxoplasma gondii parasites and Leishmania major amastigotes, which warrants further investigation. Based on the structural similarities of certain derivatives with common viral RNase H inhibitors, a HIV-1 RNase H assay was used to study the RNase H inhibition by selected test compounds. Docking of active derivatives into the active site of the HIV-1 RNase H enzyme was carried out. The new compound 2a, inactive in the antiparasitic tests, showed distinct HIV-1 RNase H inhibition. Thus, ring substitution determines antiparasitic or HIV-1 RNase H inhibitory activity of this promising compound class.


Subject(s)
Ribonuclease H, Human Immunodeficiency Virus , Reverse Transcriptase Inhibitors/pharmacology , Ribonuclease H/metabolism , Pyrimidines/pharmacology , Pyrimidines/chemistry , Antiparasitic Agents/pharmacology , Structure-Activity Relationship
12.
ACS Infect Dis ; 9(7): 1310-1318, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37358826

ABSTRACT

The current SARS-CoV-2 pandemic and the likelihood that new coronavirus strains will emerge in the immediate future point out the urgent need to identify new pan-coronavirus inhibitors. Strigolactones (SLs) are a class of plant hormones with multifaceted activities whose roles in plant-related fields have been extensively explored. Recently, we proved that SLs also exert antiviral activity toward herpesviruses, such as human cytomegalovirus (HCMV). Here we show that the synthetic SLs TH-EGO and EDOT-EGO impair ß-coronavirus replication including SARS-CoV-2 and the common cold human coronavirus HCoV-OC43. Interestingly, in silico simulations suggest the binding of SLs in the SARS-CoV-2 main protease (Mpro) active site, and this was further confirmed by an in vitro activity assay. Overall, our results highlight the potential efficacy of SLs as broad-spectrum antivirals against ß-coronaviruses, which may provide the rationale for repurposing this class of hormones for the treatment of COVID-19 patients.


Subject(s)
COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2 , Peptide Hydrolases
13.
Polymers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299335

ABSTRACT

It is well known that viruses cannot replicate on their own but only inside the cells of target tissues in the organism, resulting in the destruction of the cells or, in some cases, their transformation into cancer cells. While viruses have relatively low resistance in the environment, their ability to survive longer is based on environmental conditions and the type of substrate on which they are deposited. Recently, the potential for safe and efficient viral inactivation by photocatalysis has garnered increasing attention. In this study, the Phenyl carbon nitride/TiO2 heterojunction system, a hybrid organic-inorganic photocatalyst, was utilized to investigate its effectiveness in degrading the flu virus (H1N1). The system was activated by a white-LED lamp, and the process was tested on MDCK cells infected with the flu virus. The results of the study demonstrate the hybrid photocatalyst's ability to cause the virus to degrade, highlighting its effectiveness for safe and efficient viral inactivation in the visible light range. Additionally, the study underscores the advantages of using this hybrid photocatalyst over traditional inorganic photocatalysts, which typically only work in the ultraviolet range.

14.
J Chem Inf Model ; 63(11): 3601-3613, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37227780

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Drug Repositioning , Ligands , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation
15.
Viruses ; 15(5)2023 05 09.
Article in English | MEDLINE | ID: mdl-37243214

ABSTRACT

During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Drug Repositioning/methods
16.
Eur J Med Chem ; 253: 115311, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37043904

ABSTRACT

Despite the approval of vaccines, monoclonal antibodies and restrictions during the pandemic, the demand for new efficacious and safe antivirals is compelling to boost the therapeutic arsenal against the COVID-19. The viral 3-chymotrypsin-like protease (3CLpro) is an essential enzyme for replication with high homology in the active site across CoVs and variants showing an almost unique specificity for Leu-Gln as P2-P1 residues, allowing the development of broad-spectrum inhibitors. The design, synthesis, biological activity, and cocrystal structural information of newly conceived peptidomimetic covalent reversible inhibitors are herein described. The inhibitors display an aldehyde warhead, a Gln mimetic at P1 and modified P2-P3 residues. Particularly, functionalized proline residues were inserted at P2 to stabilize the ß-turn like bioactive conformation, modulating the affinity. The most potent compounds displayed low/sub-nM potency against the 3CLpro of SARS-CoV-2 and MERS-CoV and inhibited viral replication of three human CoVs, i.e. SARS-CoV-2, MERS-CoV, and HCoV 229 in different cell lines. Particularly, derivative 12 exhibited nM-low µM antiviral activity depending on the virus, and the highest selectivity index. Some compounds were co-crystallized with SARS-CoV-2 3CLpro validating our design. Altogether, these results foster future work toward broad-spectrum 3CLpro inhibitors to challenge CoVs related pandemics.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Peptidomimetics , Humans , SARS-CoV-2 , Protease Inhibitors/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , X-Rays , Peptide Hydrolases , Antiviral Agents/chemistry
17.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108610

ABSTRACT

Invading pathogens have developed weapons that subvert physiological conditions to weaken the host and permit the spread of infection. Cells, on their side, have thus developed countermeasures to maintain cellular physiology and counteract pathogenesis. The cyclic GMP-AMP (cGAMP) synthase (cGAS) is a pattern recognition receptor that recognizes viral DNA present in the cytosol, activating the stimulator of interferon genes (STING) protein and leading to the production of type I interferons (IFN-I). Given its role in innate immunity activation, STING is considered an interesting and innovative target for the development of broad-spectrum antivirals. In this review, we discuss the function of STING; its modulation by the cellular stimuli; the molecular mechanisms developed by viruses, through which they escape this defense system; and the therapeutical strategies that have been developed to date to inhibit viral replication restoring STING functionality.


Subject(s)
Antiviral Agents , Interferon Type I , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Immunity, Innate , Interferon Type I/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction , Virus Replication , Membrane Proteins/genetics , Membrane Proteins/metabolism
18.
EMBO Mol Med ; 15(5): e17580, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36946379

ABSTRACT

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.


Subject(s)
Adaptive Immunity , Antiviral Agents , COVID-19 Drug Treatment , Lactams , Animals , Mice , COVID-19/immunology , SARS-CoV-2 , Antiviral Agents/administration & dosage , Adaptive Immunity/drug effects , Lactams/administration & dosage , Memory T Cells/immunology , B-Lymphocytes/immunology , Mice, Inbred C57BL
19.
Antiviral Res ; 212: 105554, 2023 04.
Article in English | MEDLINE | ID: mdl-36804324

ABSTRACT

Ebola virus (EBOV) is a highly infectious and lethal pathogen responsible for sporadic self-limiting clusters of Ebola virus disease (EVD) in Central Africa capable of reaching epidemic status. 100% protection from lethal EBOV-Zaire in Balb/c mice was achieved by rintatolimod (Ampligen) at the well tolerated human clinical dose of 6 mg/kg. The data indicate that the mechanism of action is rintatolimod's dual ability to act as both a competitive decoy for the IID domain of VP35 blocking viral dsRNA sequestration and as a pathogen-associated molecular pattern (PAMP) restricted agonist for direct TLR3 activation but lacking RIG-1-like cytosolic helicase agonist properties. These data show promise for rintatolimod as a prophylactic therapy against human Ebola outbreaks.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Mice , Humans , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/prevention & control , Toll-Like Receptor 3 , Viral Regulatory and Accessory Proteins , Poly I-C , Ebolavirus/genetics
20.
Microbiol Spectr ; 11(1): e0251622, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36602345

ABSTRACT

SARS-CoV-2 infection is known to trigger an important inflammatory response, which has a major role in COVID-19 pathogenesis. In infectious and inflammatory contexts, the modulation of human endogenous retroviruses (HERV) has been broadly reported, being able to further sustain innate immune responses due to the expression of immunogenic viral transcripts, including double-stranded DNA (dsRNA), and eventually, immunogenic proteins. To gain insights on this poorly characterized interplay, we performed a high-throughput expression analysis of ~3,300 specific HERV loci in the peripheral blood mononuclear cells (PBMCs) of 10 healthy controls and 16 individuals being either convalescent after the infection (6) or retesting positive after convalescence (10) (Gene Expression Onmibus [GEO] data set GSE166253). Results showed that the exposure to SARS-CoV-2 infection modulates HERV expression according to the disease stage and reflecting COVID-19 immune signatures. The differential expression analysis between healthy control (HC) and COVID-19 patients allowed us to identify a total of 282 differentially expressed HERV loci (deHERV) in the individuals exposed to SARS-CoV-2 infection, independently from the clinical form. In addition, 278 and 60 deHERV loci that were specifically modulated in individuals convalescent after COVID19 infection (C) and patients that retested positive to SARS-CoV-2 after convalescence (RTP) as individually compared to HC, respectively, as well as 164 deHERV loci between C and RTP patients were identified. The identified HERV loci belonged to 36 different HERV groups, including members of all three classes. The present study provides an exhaustive picture of the HERV transcriptome in PBMCs and its dynamic variation in the presence of COVID-19, revealing specific modulation patterns according to the infection stage that can be relevant to the disease clinical manifestation and outcome. IMPORTANCE We report here the first high-throughput analysis of HERV loci expression along SARS-CoV-2 infection, as performed with peripheral blood mononuclear cells (PBMCs). Such cells are not directly infected by the virus but have a crucial role in the plethora of inflammatory and immune events that constitute a major hallmark of COVID-19 pathogenesis. Results provide a novel and exhaustive picture of HERV expression in PBMCs, revealing specific modulation patterns according to the disease condition and the concomitant immune activation. To our knowledge, this is the first set of deHERVs whose expression is dynamically modulated across COVID-19 stages, confirming a tight interplay between HERV and cellular immunity and revealing specific transcriptional signatures that can have an impact on the disease clinical manifestation and outcome.


Subject(s)
COVID-19 , Endogenous Retroviruses , Humans , Endogenous Retroviruses/genetics , Transcriptome , Leukocytes, Mononuclear , Convalescence , COVID-19/genetics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...